1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
#define LIBFFI_ASM
#include <fficonfig.h>
#include <ffi.h>
#include <powerpc/asm.h>
.file "ppc_closure.S"
#ifndef __powerpc64__
ENTRY(ffi_closure_SYSV)
.LFB1:
stwu %r1,-144(%r1)
.LCFI0:
mflr %r0
.LCFI1:
stw %r0,148(%r1)
# we want to build up an areas for the parameters passed
# in registers (both floating point and integer)
# so first save gpr 3 to gpr 10 (aligned to 4)
stw %r3, 16(%r1)
stw %r4, 20(%r1)
stw %r5, 24(%r1)
stw %r6, 28(%r1)
stw %r7, 32(%r1)
stw %r8, 36(%r1)
stw %r9, 40(%r1)
stw %r10,44(%r1)
# next save fpr 1 to fpr 8 (aligned to 8)
stfd %f1, 48(%r1)
stfd %f2, 56(%r1)
stfd %f3, 64(%r1)
stfd %f4, 72(%r1)
stfd %f5, 80(%r1)
stfd %f6, 88(%r1)
stfd %f7, 96(%r1)
stfd %f8, 104(%r1)
# set up registers for the routine that actually does the work
# get the context pointer from the trampoline
mr %r3,%r11
# now load up the pointer to the result storage
addi %r4,%r1,112
# now load up the pointer to the saved gpr registers
addi %r5,%r1,16
# now load up the pointer to the saved fpr registers */
addi %r6,%r1,48
# now load up the pointer to the outgoing parameter
# stack in the previous frame
# i.e. the previous frame pointer + 8
addi %r7,%r1,152
# make the call
bl JUMPTARGET(ffi_closure_helper_SYSV)
# now r3 contains the return type
# so use it to look up in a table
# so we know how to deal with each type
# look up the proper starting point in table
# by using return type as offset
addi %r5,%r1,112 # get pointer to results area
bl .Lget_ret_type0_addr # get pointer to .Lret_type0 into LR
mflr %r4 # move to r4
slwi %r3,%r3,4 # now multiply return type by 16
add %r3,%r3,%r4 # add contents of table to table address
mtctr %r3
bctr # jump to it
.LFE1:
# Each of the ret_typeX code fragments has to be exactly 16 bytes long
# (4 instructions). For cache effectiveness we align to a 16 byte boundary
# first.
.align 4
nop
nop
nop
.Lget_ret_type0_addr:
blrl
# case FFI_TYPE_VOID
.Lret_type0:
b .Lfinish
nop
nop
nop
# case FFI_TYPE_INT
.Lret_type1:
lwz %r3,0(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_FLOAT
.Lret_type2:
lfs %f1,0(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_DOUBLE
.Lret_type3:
lfd %f1,0(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_LONGDOUBLE
.Lret_type4:
lfd %f1,0(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_UINT8
.Lret_type5:
lbz %r3,3(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_SINT8
.Lret_type6:
lbz %r3,3(%r5)
extsb %r3,%r3
b .Lfinish
nop
# case FFI_TYPE_UINT16
.Lret_type7:
lhz %r3,2(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_SINT16
.Lret_type8:
lha %r3,2(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_UINT32
.Lret_type9:
lwz %r3,0(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_SINT32
.Lret_type10:
lwz %r3,0(%r5)
b .Lfinish
nop
nop
# case FFI_TYPE_UINT64
.Lret_type11:
lwz %r3,0(%r5)
lwz %r4,4(%r5)
b .Lfinish
nop
# case FFI_TYPE_SINT64
.Lret_type12:
lwz %r3,0(%r5)
lwz %r4,4(%r5)
b .Lfinish
nop
# case FFI_TYPE_STRUCT
.Lret_type13:
b .Lfinish
nop
nop
nop
# case FFI_TYPE_POINTER
.Lret_type14:
lwz %r3,0(%r5)
b .Lfinish
nop
nop
# case done
.Lfinish:
lwz %r0,148(%r1)
mtlr %r0
addi %r1,%r1,144
blr
END(ffi_closure_SYSV)
.section ".eh_frame",EH_FRAME_FLAGS,@progbits
.Lframe1:
.4byte .LECIE1-.LSCIE1 # Length of Common Information Entry
.LSCIE1:
.4byte 0x0 # CIE Identifier Tag
.byte 0x1 # CIE Version
#if defined _RELOCATABLE || defined __PIC__
.ascii "zR\0" # CIE Augmentation
#else
.ascii "\0" # CIE Augmentation
#endif
.uleb128 0x1 # CIE Code Alignment Factor
.sleb128 -4 # CIE Data Alignment Factor
.byte 0x41 # CIE RA Column
#if defined _RELOCATABLE || defined __PIC__
.uleb128 0x1 # Augmentation size
.byte 0x1b # FDE Encoding (pcrel sdata4)
#endif
.byte 0xc # DW_CFA_def_cfa
.uleb128 0x1
.uleb128 0x0
.align 2
.LECIE1:
.LSFDE1:
.4byte .LEFDE1-.LASFDE1 # FDE Length
.LASFDE1:
.4byte .LASFDE1-.Lframe1 # FDE CIE offset
#if defined _RELOCATABLE || defined __PIC__
.4byte .LFB1-. # FDE initial location
#else
.4byte .LFB1 # FDE initial location
#endif
.4byte .LFE1-.LFB1 # FDE address range
#if defined _RELOCATABLE || defined __PIC__
.uleb128 0x0 # Augmentation size
#endif
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI0-.LFB1
.byte 0xe # DW_CFA_def_cfa_offset
.uleb128 144
.byte 0x4 # DW_CFA_advance_loc4
.4byte .LCFI1-.LCFI0
.byte 0x2f # DW_CFA_GNU_negative_offset_extended
.uleb128 0x41
.uleb128 0x1
.align 2
.LEFDE1:
#endif
|