summaryrefslogtreecommitdiff
path: root/libffi.old/src/ia64/ffi.c
diff options
context:
space:
mode:
Diffstat (limited to 'libffi.old/src/ia64/ffi.c')
-rw-r--r--libffi.old/src/ia64/ffi.c671
1 files changed, 671 insertions, 0 deletions
diff --git a/libffi.old/src/ia64/ffi.c b/libffi.old/src/ia64/ffi.c
new file mode 100644
index 0000000..1dc27db
--- /dev/null
+++ b/libffi.old/src/ia64/ffi.c
@@ -0,0 +1,671 @@
+/* -----------------------------------------------------------------------
+ ffi.c - Copyright (c) 1998 Red Hat, Inc.
+ Copyright (c) 2000 Hewlett Packard Company
+
+ IA64 Foreign Function Interface
+
+ Permission is hereby granted, free of charge, to any person obtaining
+ a copy of this software and associated documentation files (the
+ ``Software''), to deal in the Software without restriction, including
+ without limitation the rights to use, copy, modify, merge, publish,
+ distribute, sublicense, and/or sell copies of the Software, and to
+ permit persons to whom the Software is furnished to do so, subject to
+ the following conditions:
+
+ The above copyright notice and this permission notice shall be included
+ in all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+ IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ OTHER DEALINGS IN THE SOFTWARE.
+ ----------------------------------------------------------------------- */
+
+#include <ffi.h>
+#include <ffi_common.h>
+
+#include <stdlib.h>
+#include <stdbool.h>
+
+#include "ia64_flags.h"
+
+/* Memory image of fp register contents. Should eventually be an fp */
+/* type long enough to hold an entire register. For now we use double. */
+typedef double float80;
+
+/* The stack layout at call to ffi_prep_args. Other_args will remain */
+/* on the stack for the actual call. Everything else we be transferred */
+/* to registers and popped by the assembly code. */
+
+struct ia64_args {
+ long scratch[2]; /* Two scratch words at top of stack. */
+ /* Allows sp to be passed as arg pointer. */
+ void * r8_contents; /* Value to be passed in r8 */
+ long spare; /* Not used. */
+ float80 fp_regs[8]; /* Contents of 8 floating point argument */
+ /* registers. */
+ long out_regs[8]; /* Contents of the 8 out registers used */
+ /* for integer parameters. */
+ long other_args[0]; /* Arguments passed on stack, variable size */
+ /* Treated as continuation of out_regs. */
+};
+
+static size_t float_type_size(unsigned short tp)
+{
+ switch(tp) {
+ case FFI_TYPE_FLOAT:
+ return sizeof(float);
+ case FFI_TYPE_DOUBLE:
+ return sizeof(double);
+#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE
+ case FFI_TYPE_LONGDOUBLE:
+ return sizeof(long double);
+#endif
+ default:
+ FFI_ASSERT(0);
+ }
+}
+
+/*
+ * Is type a struct containing at most n floats, doubles, or extended
+ * doubles, all of the same fp type?
+ * If so, set *element_type to the fp type.
+ */
+static bool is_homogeneous_fp_aggregate(ffi_type * type, int n,
+ unsigned short * element_type)
+{
+ ffi_type **ptr;
+ unsigned short element, struct_element;
+
+ int type_set = 0;
+
+ FFI_ASSERT(type != NULL);
+
+ FFI_ASSERT(type->elements != NULL);
+
+ ptr = &(type->elements[0]);
+
+ while ((*ptr) != NULL)
+ {
+ switch((*ptr) -> type) {
+ case FFI_TYPE_FLOAT:
+ if (type_set && element != FFI_TYPE_FLOAT) return 0;
+ if (--n < 0) return false;
+ type_set = 1;
+ element = FFI_TYPE_FLOAT;
+ break;
+ case FFI_TYPE_DOUBLE:
+ if (type_set && element != FFI_TYPE_DOUBLE) return 0;
+ if (--n < 0) return false;
+ type_set = 1;
+ element = FFI_TYPE_DOUBLE;
+ break;
+ case FFI_TYPE_STRUCT:
+ if (!is_homogeneous_fp_aggregate(type, n, &struct_element))
+ return false;
+ if (type_set && struct_element != element) return false;
+ n -= (type -> size)/float_type_size(element);
+ element = struct_element;
+ if (n < 0) return false;
+ break;
+ /* case FFI_TYPE_LONGDOUBLE:
+ Not yet implemented. */
+ default:
+ return false;
+ }
+ ptr++;
+ }
+ *element_type = element;
+ return true;
+
+}
+
+/* ffi_prep_args is called by the assembly routine once stack space
+ has been allocated for the function's arguments. It fills in
+ the arguments in the structure referenced by stack. Returns nonzero
+ if fp registers are used for arguments. */
+
+static bool
+ffi_prep_args(struct ia64_args *stack, extended_cif *ecif, int bytes)
+{
+ register long i, avn;
+ register void **p_argv;
+ register long *argp = stack -> out_regs;
+ register float80 *fp_argp = stack -> fp_regs;
+ register ffi_type **p_arg;
+
+ /* For big return structs, r8 needs to contain the target address. */
+ /* Since r8 is otherwise dead, we set it unconditionally. */
+ stack -> r8_contents = ecif -> rvalue;
+ i = 0;
+ avn = ecif->cif->nargs;
+ p_arg = ecif->cif->arg_types;
+ p_argv = ecif->avalue;
+ while (i < avn)
+ {
+ size_t z; /* z is in units of arg slots or words, not bytes. */
+
+ switch ((*p_arg)->type)
+ {
+ case FFI_TYPE_SINT8:
+ z = 1;
+ *(SINT64 *) argp = *(SINT8 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT8:
+ z = 1;
+ *(UINT64 *) argp = *(UINT8 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_SINT16:
+ z = 1;
+ *(SINT64 *) argp = *(SINT16 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT16:
+ z = 1;
+ *(UINT64 *) argp = *(UINT16 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_SINT32:
+ z = 1;
+ *(SINT64 *) argp = *(SINT32 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_UINT32:
+ z = 1;
+ *(UINT64 *) argp = *(UINT32 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_SINT64:
+ case FFI_TYPE_UINT64:
+ case FFI_TYPE_POINTER:
+ z = 1;
+ *(UINT64 *) argp = *(UINT64 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_FLOAT:
+ z = 1;
+ if (fp_argp - stack->fp_regs < 8)
+ {
+ /* Note the conversion -- all the fp regs are loaded as
+ doubles. */
+ *fp_argp++ = *(float *)(* p_argv);
+ }
+ /* Also put it into the integer registers or memory: */
+ *(UINT64 *) argp = *(UINT32 *)(* p_argv);
+ break;
+
+ case FFI_TYPE_DOUBLE:
+ z = 1;
+ if (fp_argp - stack->fp_regs < 8)
+ *fp_argp++ = *(double *)(* p_argv);
+ /* Also put it into the integer registers or memory: */
+ *(double *) argp = *(double *)(* p_argv);
+ break;
+
+ case FFI_TYPE_STRUCT:
+ {
+ size_t sz = (*p_arg)->size;
+ unsigned short element_type;
+ z = ((*p_arg)->size + FFI_SIZEOF_ARG - 1)/FFI_SIZEOF_ARG;
+ if (is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) {
+ int i;
+ int nelements = sz/float_type_size(element_type);
+ for (i = 0; i < nelements; ++i) {
+ switch (element_type) {
+ case FFI_TYPE_FLOAT:
+ if (fp_argp - stack->fp_regs < 8)
+ *fp_argp++ = ((float *)(* p_argv))[i];
+ break;
+ case FFI_TYPE_DOUBLE:
+ if (fp_argp - stack->fp_regs < 8)
+ *fp_argp++ = ((double *)(* p_argv))[i];
+ break;
+ default:
+ /* Extended precision not yet implemented. */
+ abort();
+ }
+ }
+ }
+ /* And pass it in integer registers as a struct, with */
+ /* its actual field sizes packed into registers. */
+ memcpy(argp, *p_argv, (*p_arg)->size);
+ }
+ break;
+
+ default:
+ FFI_ASSERT(0);
+ }
+
+ argp += z;
+ i++, p_arg++, p_argv++;
+ }
+ return (fp_argp != stack -> fp_regs);
+}
+
+/* Perform machine dependent cif processing */
+ffi_status
+ffi_prep_cif_machdep(ffi_cif *cif)
+{
+ long i, avn;
+ bool is_simple = true;
+ long simple_flag = FFI_SIMPLE_V;
+ /* Adjust cif->bytes to include space for the 2 scratch words,
+ r8 register contents, spare word,
+ the 8 fp register contents, and all 8 integer register contents.
+ This will be removed before the call, though 2 scratch words must
+ remain. */
+
+ cif->bytes += 4*sizeof(long) + 8 *sizeof(float80);
+ if (cif->bytes < sizeof(struct ia64_args))
+ cif->bytes = sizeof(struct ia64_args);
+
+ /* The stack must be double word aligned, so round bytes up
+ appropriately. */
+
+ cif->bytes = ALIGN(cif->bytes, 2*sizeof(void*));
+
+ avn = cif->nargs;
+ if (avn <= 2) {
+ for (i = 0; i < avn; ++i) {
+ switch(cif -> arg_types[i] -> type) {
+ case FFI_TYPE_SINT32:
+ simple_flag = FFI_ADD_INT_ARG(simple_flag);
+ break;
+ case FFI_TYPE_SINT64:
+ case FFI_TYPE_UINT64:
+ case FFI_TYPE_POINTER:
+ simple_flag = FFI_ADD_LONG_ARG(simple_flag);
+ break;
+ default:
+ is_simple = false;
+ }
+ }
+ } else {
+ is_simple = false;
+ }
+
+ /* Set the return type flag */
+ switch (cif->rtype->type)
+ {
+ case FFI_TYPE_VOID:
+ cif->flags = FFI_TYPE_VOID;
+ break;
+
+ case FFI_TYPE_STRUCT:
+ {
+ size_t sz = cif -> rtype -> size;
+ unsigned short element_type;
+
+ is_simple = false;
+ if (is_homogeneous_fp_aggregate(cif -> rtype, 8, &element_type)) {
+ int nelements = sz/float_type_size(element_type);
+ if (nelements <= 1) {
+ if (0 == nelements) {
+ cif -> flags = FFI_TYPE_VOID;
+ } else {
+ cif -> flags = element_type;
+ }
+ } else {
+ switch(element_type) {
+ case FFI_TYPE_FLOAT:
+ cif -> flags = FFI_IS_FLOAT_FP_AGGREGATE | nelements;
+ break;
+ case FFI_TYPE_DOUBLE:
+ cif -> flags = FFI_IS_DOUBLE_FP_AGGREGATE | nelements;
+ break;
+ default:
+ /* long double NYI */
+ abort();
+ }
+ }
+ break;
+ }
+ if (sz <= 32) {
+ if (sz <= 8) {
+ cif->flags = FFI_TYPE_INT;
+ } else if (sz <= 16) {
+ cif->flags = FFI_IS_SMALL_STRUCT2;
+ } else if (sz <= 24) {
+ cif->flags = FFI_IS_SMALL_STRUCT3;
+ } else {
+ cif->flags = FFI_IS_SMALL_STRUCT4;
+ }
+ } else {
+ cif->flags = FFI_TYPE_STRUCT;
+ }
+ }
+ break;
+
+ case FFI_TYPE_FLOAT:
+ is_simple = false;
+ cif->flags = FFI_TYPE_FLOAT;
+ break;
+
+ case FFI_TYPE_DOUBLE:
+ is_simple = false;
+ cif->flags = FFI_TYPE_DOUBLE;
+ break;
+
+ default:
+ cif->flags = FFI_TYPE_INT;
+ /* This seems to depend on little endian mode, and the fact that */
+ /* the return pointer always points to at least 8 bytes. But */
+ /* that also seems to be true for other platforms. */
+ break;
+ }
+
+ if (is_simple) cif -> flags |= simple_flag;
+ return FFI_OK;
+}
+
+extern int ffi_call_unix(bool (*)(struct ia64_args *, extended_cif *, int),
+ extended_cif *, unsigned,
+ unsigned, unsigned *, void (*)());
+
+void
+ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue)
+{
+ extended_cif ecif;
+ long simple = cif -> flags & FFI_SIMPLE;
+
+ /* Should this also check for Unix ABI? */
+ /* This is almost, but not quite, machine independent. Note that */
+ /* we can get away with not caring about length of the result because */
+ /* we assume we are little endian, and the result buffer is large */
+ /* enough. */
+ /* This needs work for HP/UX. */
+ if (simple) {
+ long (*lfn)() = (long (*)())fn;
+ long result;
+ switch(simple) {
+ case FFI_SIMPLE_V:
+ result = lfn();
+ break;
+ case FFI_SIMPLE_I:
+ result = lfn(*(int *)avalue[0]);
+ break;
+ case FFI_SIMPLE_L:
+ result = lfn(*(long *)avalue[0]);
+ break;
+ case FFI_SIMPLE_II:
+ result = lfn(*(int *)avalue[0], *(int *)avalue[1]);
+ break;
+ case FFI_SIMPLE_IL:
+ result = lfn(*(int *)avalue[0], *(long *)avalue[1]);
+ break;
+ case FFI_SIMPLE_LI:
+ result = lfn(*(long *)avalue[0], *(int *)avalue[1]);
+ break;
+ case FFI_SIMPLE_LL:
+ result = lfn(*(long *)avalue[0], *(long *)avalue[1]);
+ break;
+ }
+ if ((cif->flags & ~FFI_SIMPLE) != FFI_TYPE_VOID && 0 != rvalue) {
+ * (long *)rvalue = result;
+ }
+ return;
+ }
+ ecif.cif = cif;
+ ecif.avalue = avalue;
+
+ /* If the return value is a struct and we don't have a return
+ value address then we need to make one. */
+
+ if (rvalue == NULL && cif->rtype->type == FFI_TYPE_STRUCT)
+ ecif.rvalue = alloca(cif->rtype->size);
+ else
+ ecif.rvalue = rvalue;
+
+ switch (cif->abi)
+ {
+ case FFI_UNIX:
+ ffi_call_unix(ffi_prep_args, &ecif, cif->bytes,
+ cif->flags, rvalue, fn);
+ break;
+
+ default:
+ FFI_ASSERT(0);
+ break;
+ }
+}
+
+/*
+ * Closures represent a pair consisting of a function pointer, and
+ * some user data. A closure is invoked by reinterpreting the closure
+ * as a function pointer, and branching to it. Thus we can make an
+ * interpreted function callable as a C function: We turn the interpreter
+ * itself, together with a pointer specifying the interpreted procedure,
+ * into a closure.
+ * On X86, the first few words of the closure structure actually contain code,
+ * which will do the right thing. On most other architectures, this
+ * would raise some Icache/Dcache coherence issues (which can be solved, but
+ * often not cheaply).
+ * For IA64, function pointer are already pairs consisting of a code
+ * pointer, and a gp pointer. The latter is needed to access global variables.
+ * Here we set up such a pair as the first two words of the closure (in
+ * the "trampoline" area), but we replace the gp pointer with a pointer
+ * to the closure itself. We also add the real gp pointer to the
+ * closure. This allows the function entry code to both retrieve the
+ * user data, and to restire the correct gp pointer.
+ */
+
+static void
+ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue,
+ void **avalue, ffi_cif *cif);
+
+/* This function is entered with the doctored gp (r1) value.
+ * This code is extremely gcc specific. There is some argument that
+ * it should really be written in assembly code, since it depends on
+ * gcc properties that might change over time.
+ */
+
+/* ffi_closure_UNIX is an assembly routine, which copies the register */
+/* state into a struct ia64_args, and then invokes */
+/* ffi_closure_UNIX_inner. It also recovers the closure pointer */
+/* from its fake gp pointer. */
+void ffi_closure_UNIX();
+
+#ifndef __GNUC__
+# error This requires gcc
+#endif
+void
+ffi_closure_UNIX_inner (ffi_closure *closure, struct ia64_args * args)
+/* Hopefully declaring this as a varargs function will force all args */
+/* to memory. */
+{
+ // this is our return value storage
+ long double res;
+
+ // our various things...
+ ffi_cif *cif;
+ unsigned short rtype;
+ void *resp;
+ void **arg_area;
+
+ resp = (void*)&res;
+ cif = closure->cif;
+ arg_area = (void**) alloca (cif->nargs * sizeof (void*));
+
+ /* this call will initialize ARG_AREA, such that each
+ * element in that array points to the corresponding
+ * value on the stack; and if the function returns
+ * a structure, it will re-set RESP to point to the
+ * structure return address. */
+
+ ffi_prep_incoming_args_UNIX(args, (void**)&resp, arg_area, cif);
+
+ (closure->fun) (cif, resp, arg_area, closure->user_data);
+
+ rtype = cif->flags;
+
+ /* now, do a generic return based on the value of rtype */
+ if (rtype == FFI_TYPE_INT)
+ {
+ asm volatile ("ld8 r8=[%0]" : : "r" (resp) : "r8");
+ }
+ else if (rtype == FFI_TYPE_FLOAT)
+ {
+ asm volatile ("ldfs f8=[%0]" : : "r" (resp) : "f8");
+ }
+ else if (rtype == FFI_TYPE_DOUBLE)
+ {
+ asm volatile ("ldfd f8=[%0]" : : "r" (resp) : "f8");
+ }
+ else if (rtype == FFI_IS_SMALL_STRUCT2)
+ {
+ asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]"
+ : : "r" (resp), "r" (resp+8) : "r8","r9");
+ }
+ else if (rtype == FFI_IS_SMALL_STRUCT3)
+ {
+ asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]"
+ : : "r" (resp), "r" (resp+8), "r" (resp+16)
+ : "r8","r9","r10");
+ }
+ else if (rtype == FFI_IS_SMALL_STRUCT4)
+ {
+ asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]; ld8 r11=[%3]"
+ : : "r" (resp), "r" (resp+8), "r" (resp+16), "r" (resp+24)
+ : "r8","r9","r10","r11");
+ }
+ else if (rtype != FFI_TYPE_VOID && rtype != FFI_TYPE_STRUCT)
+ {
+ /* Can only happen for homogeneous FP aggregates? */
+ abort();
+ }
+}
+
+static void
+ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue,
+ void **avalue, ffi_cif *cif)
+{
+ register unsigned int i;
+ register unsigned int avn;
+ register void **p_argv;
+ register long *argp = args -> out_regs;
+ unsigned fp_reg_num = 0;
+ register ffi_type **p_arg;
+
+ avn = cif->nargs;
+ p_argv = avalue;
+
+ for (i = cif->nargs, p_arg = cif->arg_types; i != 0; i--, p_arg++)
+ {
+ size_t z; /* In units of words or argument slots. */
+
+ switch ((*p_arg)->type)
+ {
+ case FFI_TYPE_SINT8:
+ case FFI_TYPE_UINT8:
+ case FFI_TYPE_SINT16:
+ case FFI_TYPE_UINT16:
+ case FFI_TYPE_SINT32:
+ case FFI_TYPE_UINT32:
+ case FFI_TYPE_SINT64:
+ case FFI_TYPE_UINT64:
+ case FFI_TYPE_POINTER:
+ z = 1;
+ *p_argv = (void *)argp;
+ break;
+
+ case FFI_TYPE_FLOAT:
+ z = 1;
+ /* Convert argument back to float in place from the saved value */
+ if (argp - args->out_regs < 8 && fp_reg_num < 8) {
+ *(float *)argp = args -> fp_regs[fp_reg_num++];
+ }
+ *p_argv = (void *)argp;
+ break;
+
+ case FFI_TYPE_DOUBLE:
+ z = 1;
+ if (argp - args->out_regs < 8 && fp_reg_num < 8) {
+ *p_argv = args -> fp_regs + fp_reg_num++;
+ } else {
+ *p_argv = (void *)argp;
+ }
+ break;
+
+ case FFI_TYPE_STRUCT:
+ {
+ size_t sz = (*p_arg)->size;
+ unsigned short element_type;
+ z = ((*p_arg)->size + FFI_SIZEOF_ARG - 1)/FFI_SIZEOF_ARG;
+ if (argp - args->out_regs < 8
+ && is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) {
+ int nelements = sz/float_type_size(element_type);
+ if (nelements + fp_reg_num >= 8) {
+ /* hard case NYI. */
+ abort();
+ }
+ if (element_type == FFI_TYPE_DOUBLE) {
+ *p_argv = args -> fp_regs + fp_reg_num;
+ fp_reg_num += nelements;
+ break;
+ }
+ if (element_type == FFI_TYPE_FLOAT) {
+ int j;
+ for (j = 0; j < nelements; ++ j) {
+ ((float *)argp)[j] = args -> fp_regs[fp_reg_num + j];
+ }
+ *p_argv = (void *)argp;
+ fp_reg_num += nelements;
+ break;
+ }
+ abort(); /* Other fp types NYI */
+ }
+ }
+ break;
+
+ default:
+ FFI_ASSERT(0);
+ }
+
+ argp += z;
+ p_argv++;
+
+ }
+
+ return;
+}
+
+
+/* Fill in a closure to refer to the specified fun and user_data. */
+/* cif specifies the argument and result types for fun. */
+/* the cif must already be prep'ed */
+
+/* The layout of a function descriptor. A C function pointer really */
+/* points to one of these. */
+typedef struct ia64_fd_struct {
+ void *code_pointer;
+ void *gp;
+} ia64_fd;
+
+ffi_status
+ffi_prep_closure (ffi_closure* closure,
+ ffi_cif* cif,
+ void (*fun)(ffi_cif*,void*,void**,void*),
+ void *user_data)
+{
+ struct ffi_ia64_trampoline_struct *tramp =
+ (struct ffi_ia64_trampoline_struct *) (closure -> tramp);
+ ia64_fd *fd = (ia64_fd *)(void *)ffi_closure_UNIX;
+
+ FFI_ASSERT (cif->abi == FFI_UNIX);
+
+ tramp -> code_pointer = fd -> code_pointer;
+ tramp -> real_gp = fd -> gp;
+ tramp -> fake_gp = closure;
+ closure->cif = cif;
+ closure->user_data = user_data;
+ closure->fun = fun;
+
+ return FFI_OK;
+}
+
+