From 17a4d31014692f959a2a73f4107f34d6f6763423 Mon Sep 17 00:00:00 2001 From: Matthias Benkard Date: Tue, 4 Mar 2008 11:35:21 +0100 Subject: Remove the obsolete libffi version from the tree. darcs-hash:d03cd1c65ed7114fa601e49a8d189e835479e93f --- libffi.old/src/ia64/ffi.c | 671 ---------------------------------------------- 1 file changed, 671 deletions(-) delete mode 100644 libffi.old/src/ia64/ffi.c (limited to 'libffi.old/src/ia64/ffi.c') diff --git a/libffi.old/src/ia64/ffi.c b/libffi.old/src/ia64/ffi.c deleted file mode 100644 index 1dc27db..0000000 --- a/libffi.old/src/ia64/ffi.c +++ /dev/null @@ -1,671 +0,0 @@ -/* ----------------------------------------------------------------------- - ffi.c - Copyright (c) 1998 Red Hat, Inc. - Copyright (c) 2000 Hewlett Packard Company - - IA64 Foreign Function Interface - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS - OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. - IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR - OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, - ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR - OTHER DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -#include -#include - -#include -#include - -#include "ia64_flags.h" - -/* Memory image of fp register contents. Should eventually be an fp */ -/* type long enough to hold an entire register. For now we use double. */ -typedef double float80; - -/* The stack layout at call to ffi_prep_args. Other_args will remain */ -/* on the stack for the actual call. Everything else we be transferred */ -/* to registers and popped by the assembly code. */ - -struct ia64_args { - long scratch[2]; /* Two scratch words at top of stack. */ - /* Allows sp to be passed as arg pointer. */ - void * r8_contents; /* Value to be passed in r8 */ - long spare; /* Not used. */ - float80 fp_regs[8]; /* Contents of 8 floating point argument */ - /* registers. */ - long out_regs[8]; /* Contents of the 8 out registers used */ - /* for integer parameters. */ - long other_args[0]; /* Arguments passed on stack, variable size */ - /* Treated as continuation of out_regs. */ -}; - -static size_t float_type_size(unsigned short tp) -{ - switch(tp) { - case FFI_TYPE_FLOAT: - return sizeof(float); - case FFI_TYPE_DOUBLE: - return sizeof(double); -#if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE - case FFI_TYPE_LONGDOUBLE: - return sizeof(long double); -#endif - default: - FFI_ASSERT(0); - } -} - -/* - * Is type a struct containing at most n floats, doubles, or extended - * doubles, all of the same fp type? - * If so, set *element_type to the fp type. - */ -static bool is_homogeneous_fp_aggregate(ffi_type * type, int n, - unsigned short * element_type) -{ - ffi_type **ptr; - unsigned short element, struct_element; - - int type_set = 0; - - FFI_ASSERT(type != NULL); - - FFI_ASSERT(type->elements != NULL); - - ptr = &(type->elements[0]); - - while ((*ptr) != NULL) - { - switch((*ptr) -> type) { - case FFI_TYPE_FLOAT: - if (type_set && element != FFI_TYPE_FLOAT) return 0; - if (--n < 0) return false; - type_set = 1; - element = FFI_TYPE_FLOAT; - break; - case FFI_TYPE_DOUBLE: - if (type_set && element != FFI_TYPE_DOUBLE) return 0; - if (--n < 0) return false; - type_set = 1; - element = FFI_TYPE_DOUBLE; - break; - case FFI_TYPE_STRUCT: - if (!is_homogeneous_fp_aggregate(type, n, &struct_element)) - return false; - if (type_set && struct_element != element) return false; - n -= (type -> size)/float_type_size(element); - element = struct_element; - if (n < 0) return false; - break; - /* case FFI_TYPE_LONGDOUBLE: - Not yet implemented. */ - default: - return false; - } - ptr++; - } - *element_type = element; - return true; - -} - -/* ffi_prep_args is called by the assembly routine once stack space - has been allocated for the function's arguments. It fills in - the arguments in the structure referenced by stack. Returns nonzero - if fp registers are used for arguments. */ - -static bool -ffi_prep_args(struct ia64_args *stack, extended_cif *ecif, int bytes) -{ - register long i, avn; - register void **p_argv; - register long *argp = stack -> out_regs; - register float80 *fp_argp = stack -> fp_regs; - register ffi_type **p_arg; - - /* For big return structs, r8 needs to contain the target address. */ - /* Since r8 is otherwise dead, we set it unconditionally. */ - stack -> r8_contents = ecif -> rvalue; - i = 0; - avn = ecif->cif->nargs; - p_arg = ecif->cif->arg_types; - p_argv = ecif->avalue; - while (i < avn) - { - size_t z; /* z is in units of arg slots or words, not bytes. */ - - switch ((*p_arg)->type) - { - case FFI_TYPE_SINT8: - z = 1; - *(SINT64 *) argp = *(SINT8 *)(* p_argv); - break; - - case FFI_TYPE_UINT8: - z = 1; - *(UINT64 *) argp = *(UINT8 *)(* p_argv); - break; - - case FFI_TYPE_SINT16: - z = 1; - *(SINT64 *) argp = *(SINT16 *)(* p_argv); - break; - - case FFI_TYPE_UINT16: - z = 1; - *(UINT64 *) argp = *(UINT16 *)(* p_argv); - break; - - case FFI_TYPE_SINT32: - z = 1; - *(SINT64 *) argp = *(SINT32 *)(* p_argv); - break; - - case FFI_TYPE_UINT32: - z = 1; - *(UINT64 *) argp = *(UINT32 *)(* p_argv); - break; - - case FFI_TYPE_SINT64: - case FFI_TYPE_UINT64: - case FFI_TYPE_POINTER: - z = 1; - *(UINT64 *) argp = *(UINT64 *)(* p_argv); - break; - - case FFI_TYPE_FLOAT: - z = 1; - if (fp_argp - stack->fp_regs < 8) - { - /* Note the conversion -- all the fp regs are loaded as - doubles. */ - *fp_argp++ = *(float *)(* p_argv); - } - /* Also put it into the integer registers or memory: */ - *(UINT64 *) argp = *(UINT32 *)(* p_argv); - break; - - case FFI_TYPE_DOUBLE: - z = 1; - if (fp_argp - stack->fp_regs < 8) - *fp_argp++ = *(double *)(* p_argv); - /* Also put it into the integer registers or memory: */ - *(double *) argp = *(double *)(* p_argv); - break; - - case FFI_TYPE_STRUCT: - { - size_t sz = (*p_arg)->size; - unsigned short element_type; - z = ((*p_arg)->size + FFI_SIZEOF_ARG - 1)/FFI_SIZEOF_ARG; - if (is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) { - int i; - int nelements = sz/float_type_size(element_type); - for (i = 0; i < nelements; ++i) { - switch (element_type) { - case FFI_TYPE_FLOAT: - if (fp_argp - stack->fp_regs < 8) - *fp_argp++ = ((float *)(* p_argv))[i]; - break; - case FFI_TYPE_DOUBLE: - if (fp_argp - stack->fp_regs < 8) - *fp_argp++ = ((double *)(* p_argv))[i]; - break; - default: - /* Extended precision not yet implemented. */ - abort(); - } - } - } - /* And pass it in integer registers as a struct, with */ - /* its actual field sizes packed into registers. */ - memcpy(argp, *p_argv, (*p_arg)->size); - } - break; - - default: - FFI_ASSERT(0); - } - - argp += z; - i++, p_arg++, p_argv++; - } - return (fp_argp != stack -> fp_regs); -} - -/* Perform machine dependent cif processing */ -ffi_status -ffi_prep_cif_machdep(ffi_cif *cif) -{ - long i, avn; - bool is_simple = true; - long simple_flag = FFI_SIMPLE_V; - /* Adjust cif->bytes to include space for the 2 scratch words, - r8 register contents, spare word, - the 8 fp register contents, and all 8 integer register contents. - This will be removed before the call, though 2 scratch words must - remain. */ - - cif->bytes += 4*sizeof(long) + 8 *sizeof(float80); - if (cif->bytes < sizeof(struct ia64_args)) - cif->bytes = sizeof(struct ia64_args); - - /* The stack must be double word aligned, so round bytes up - appropriately. */ - - cif->bytes = ALIGN(cif->bytes, 2*sizeof(void*)); - - avn = cif->nargs; - if (avn <= 2) { - for (i = 0; i < avn; ++i) { - switch(cif -> arg_types[i] -> type) { - case FFI_TYPE_SINT32: - simple_flag = FFI_ADD_INT_ARG(simple_flag); - break; - case FFI_TYPE_SINT64: - case FFI_TYPE_UINT64: - case FFI_TYPE_POINTER: - simple_flag = FFI_ADD_LONG_ARG(simple_flag); - break; - default: - is_simple = false; - } - } - } else { - is_simple = false; - } - - /* Set the return type flag */ - switch (cif->rtype->type) - { - case FFI_TYPE_VOID: - cif->flags = FFI_TYPE_VOID; - break; - - case FFI_TYPE_STRUCT: - { - size_t sz = cif -> rtype -> size; - unsigned short element_type; - - is_simple = false; - if (is_homogeneous_fp_aggregate(cif -> rtype, 8, &element_type)) { - int nelements = sz/float_type_size(element_type); - if (nelements <= 1) { - if (0 == nelements) { - cif -> flags = FFI_TYPE_VOID; - } else { - cif -> flags = element_type; - } - } else { - switch(element_type) { - case FFI_TYPE_FLOAT: - cif -> flags = FFI_IS_FLOAT_FP_AGGREGATE | nelements; - break; - case FFI_TYPE_DOUBLE: - cif -> flags = FFI_IS_DOUBLE_FP_AGGREGATE | nelements; - break; - default: - /* long double NYI */ - abort(); - } - } - break; - } - if (sz <= 32) { - if (sz <= 8) { - cif->flags = FFI_TYPE_INT; - } else if (sz <= 16) { - cif->flags = FFI_IS_SMALL_STRUCT2; - } else if (sz <= 24) { - cif->flags = FFI_IS_SMALL_STRUCT3; - } else { - cif->flags = FFI_IS_SMALL_STRUCT4; - } - } else { - cif->flags = FFI_TYPE_STRUCT; - } - } - break; - - case FFI_TYPE_FLOAT: - is_simple = false; - cif->flags = FFI_TYPE_FLOAT; - break; - - case FFI_TYPE_DOUBLE: - is_simple = false; - cif->flags = FFI_TYPE_DOUBLE; - break; - - default: - cif->flags = FFI_TYPE_INT; - /* This seems to depend on little endian mode, and the fact that */ - /* the return pointer always points to at least 8 bytes. But */ - /* that also seems to be true for other platforms. */ - break; - } - - if (is_simple) cif -> flags |= simple_flag; - return FFI_OK; -} - -extern int ffi_call_unix(bool (*)(struct ia64_args *, extended_cif *, int), - extended_cif *, unsigned, - unsigned, unsigned *, void (*)()); - -void -ffi_call(ffi_cif *cif, void (*fn)(), void *rvalue, void **avalue) -{ - extended_cif ecif; - long simple = cif -> flags & FFI_SIMPLE; - - /* Should this also check for Unix ABI? */ - /* This is almost, but not quite, machine independent. Note that */ - /* we can get away with not caring about length of the result because */ - /* we assume we are little endian, and the result buffer is large */ - /* enough. */ - /* This needs work for HP/UX. */ - if (simple) { - long (*lfn)() = (long (*)())fn; - long result; - switch(simple) { - case FFI_SIMPLE_V: - result = lfn(); - break; - case FFI_SIMPLE_I: - result = lfn(*(int *)avalue[0]); - break; - case FFI_SIMPLE_L: - result = lfn(*(long *)avalue[0]); - break; - case FFI_SIMPLE_II: - result = lfn(*(int *)avalue[0], *(int *)avalue[1]); - break; - case FFI_SIMPLE_IL: - result = lfn(*(int *)avalue[0], *(long *)avalue[1]); - break; - case FFI_SIMPLE_LI: - result = lfn(*(long *)avalue[0], *(int *)avalue[1]); - break; - case FFI_SIMPLE_LL: - result = lfn(*(long *)avalue[0], *(long *)avalue[1]); - break; - } - if ((cif->flags & ~FFI_SIMPLE) != FFI_TYPE_VOID && 0 != rvalue) { - * (long *)rvalue = result; - } - return; - } - ecif.cif = cif; - ecif.avalue = avalue; - - /* If the return value is a struct and we don't have a return - value address then we need to make one. */ - - if (rvalue == NULL && cif->rtype->type == FFI_TYPE_STRUCT) - ecif.rvalue = alloca(cif->rtype->size); - else - ecif.rvalue = rvalue; - - switch (cif->abi) - { - case FFI_UNIX: - ffi_call_unix(ffi_prep_args, &ecif, cif->bytes, - cif->flags, rvalue, fn); - break; - - default: - FFI_ASSERT(0); - break; - } -} - -/* - * Closures represent a pair consisting of a function pointer, and - * some user data. A closure is invoked by reinterpreting the closure - * as a function pointer, and branching to it. Thus we can make an - * interpreted function callable as a C function: We turn the interpreter - * itself, together with a pointer specifying the interpreted procedure, - * into a closure. - * On X86, the first few words of the closure structure actually contain code, - * which will do the right thing. On most other architectures, this - * would raise some Icache/Dcache coherence issues (which can be solved, but - * often not cheaply). - * For IA64, function pointer are already pairs consisting of a code - * pointer, and a gp pointer. The latter is needed to access global variables. - * Here we set up such a pair as the first two words of the closure (in - * the "trampoline" area), but we replace the gp pointer with a pointer - * to the closure itself. We also add the real gp pointer to the - * closure. This allows the function entry code to both retrieve the - * user data, and to restire the correct gp pointer. - */ - -static void -ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue, - void **avalue, ffi_cif *cif); - -/* This function is entered with the doctored gp (r1) value. - * This code is extremely gcc specific. There is some argument that - * it should really be written in assembly code, since it depends on - * gcc properties that might change over time. - */ - -/* ffi_closure_UNIX is an assembly routine, which copies the register */ -/* state into a struct ia64_args, and then invokes */ -/* ffi_closure_UNIX_inner. It also recovers the closure pointer */ -/* from its fake gp pointer. */ -void ffi_closure_UNIX(); - -#ifndef __GNUC__ -# error This requires gcc -#endif -void -ffi_closure_UNIX_inner (ffi_closure *closure, struct ia64_args * args) -/* Hopefully declaring this as a varargs function will force all args */ -/* to memory. */ -{ - // this is our return value storage - long double res; - - // our various things... - ffi_cif *cif; - unsigned short rtype; - void *resp; - void **arg_area; - - resp = (void*)&res; - cif = closure->cif; - arg_area = (void**) alloca (cif->nargs * sizeof (void*)); - - /* this call will initialize ARG_AREA, such that each - * element in that array points to the corresponding - * value on the stack; and if the function returns - * a structure, it will re-set RESP to point to the - * structure return address. */ - - ffi_prep_incoming_args_UNIX(args, (void**)&resp, arg_area, cif); - - (closure->fun) (cif, resp, arg_area, closure->user_data); - - rtype = cif->flags; - - /* now, do a generic return based on the value of rtype */ - if (rtype == FFI_TYPE_INT) - { - asm volatile ("ld8 r8=[%0]" : : "r" (resp) : "r8"); - } - else if (rtype == FFI_TYPE_FLOAT) - { - asm volatile ("ldfs f8=[%0]" : : "r" (resp) : "f8"); - } - else if (rtype == FFI_TYPE_DOUBLE) - { - asm volatile ("ldfd f8=[%0]" : : "r" (resp) : "f8"); - } - else if (rtype == FFI_IS_SMALL_STRUCT2) - { - asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]" - : : "r" (resp), "r" (resp+8) : "r8","r9"); - } - else if (rtype == FFI_IS_SMALL_STRUCT3) - { - asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]" - : : "r" (resp), "r" (resp+8), "r" (resp+16) - : "r8","r9","r10"); - } - else if (rtype == FFI_IS_SMALL_STRUCT4) - { - asm volatile ("ld8 r8=[%0]; ld8 r9=[%1]; ld8 r10=[%2]; ld8 r11=[%3]" - : : "r" (resp), "r" (resp+8), "r" (resp+16), "r" (resp+24) - : "r8","r9","r10","r11"); - } - else if (rtype != FFI_TYPE_VOID && rtype != FFI_TYPE_STRUCT) - { - /* Can only happen for homogeneous FP aggregates? */ - abort(); - } -} - -static void -ffi_prep_incoming_args_UNIX(struct ia64_args *args, void **rvalue, - void **avalue, ffi_cif *cif) -{ - register unsigned int i; - register unsigned int avn; - register void **p_argv; - register long *argp = args -> out_regs; - unsigned fp_reg_num = 0; - register ffi_type **p_arg; - - avn = cif->nargs; - p_argv = avalue; - - for (i = cif->nargs, p_arg = cif->arg_types; i != 0; i--, p_arg++) - { - size_t z; /* In units of words or argument slots. */ - - switch ((*p_arg)->type) - { - case FFI_TYPE_SINT8: - case FFI_TYPE_UINT8: - case FFI_TYPE_SINT16: - case FFI_TYPE_UINT16: - case FFI_TYPE_SINT32: - case FFI_TYPE_UINT32: - case FFI_TYPE_SINT64: - case FFI_TYPE_UINT64: - case FFI_TYPE_POINTER: - z = 1; - *p_argv = (void *)argp; - break; - - case FFI_TYPE_FLOAT: - z = 1; - /* Convert argument back to float in place from the saved value */ - if (argp - args->out_regs < 8 && fp_reg_num < 8) { - *(float *)argp = args -> fp_regs[fp_reg_num++]; - } - *p_argv = (void *)argp; - break; - - case FFI_TYPE_DOUBLE: - z = 1; - if (argp - args->out_regs < 8 && fp_reg_num < 8) { - *p_argv = args -> fp_regs + fp_reg_num++; - } else { - *p_argv = (void *)argp; - } - break; - - case FFI_TYPE_STRUCT: - { - size_t sz = (*p_arg)->size; - unsigned short element_type; - z = ((*p_arg)->size + FFI_SIZEOF_ARG - 1)/FFI_SIZEOF_ARG; - if (argp - args->out_regs < 8 - && is_homogeneous_fp_aggregate(*p_arg, 8, &element_type)) { - int nelements = sz/float_type_size(element_type); - if (nelements + fp_reg_num >= 8) { - /* hard case NYI. */ - abort(); - } - if (element_type == FFI_TYPE_DOUBLE) { - *p_argv = args -> fp_regs + fp_reg_num; - fp_reg_num += nelements; - break; - } - if (element_type == FFI_TYPE_FLOAT) { - int j; - for (j = 0; j < nelements; ++ j) { - ((float *)argp)[j] = args -> fp_regs[fp_reg_num + j]; - } - *p_argv = (void *)argp; - fp_reg_num += nelements; - break; - } - abort(); /* Other fp types NYI */ - } - } - break; - - default: - FFI_ASSERT(0); - } - - argp += z; - p_argv++; - - } - - return; -} - - -/* Fill in a closure to refer to the specified fun and user_data. */ -/* cif specifies the argument and result types for fun. */ -/* the cif must already be prep'ed */ - -/* The layout of a function descriptor. A C function pointer really */ -/* points to one of these. */ -typedef struct ia64_fd_struct { - void *code_pointer; - void *gp; -} ia64_fd; - -ffi_status -ffi_prep_closure (ffi_closure* closure, - ffi_cif* cif, - void (*fun)(ffi_cif*,void*,void**,void*), - void *user_data) -{ - struct ffi_ia64_trampoline_struct *tramp = - (struct ffi_ia64_trampoline_struct *) (closure -> tramp); - ia64_fd *fd = (ia64_fd *)(void *)ffi_closure_UNIX; - - FFI_ASSERT (cif->abi == FFI_UNIX); - - tramp -> code_pointer = fd -> code_pointer; - tramp -> real_gp = fd -> gp; - tramp -> fake_gp = closure; - closure->cif = cif; - closure->user_data = user_data; - closure->fun = fun; - - return FFI_OK; -} - - -- cgit v1.2.3